C2H5COOH ⇌ C2H5COO– + H+
[C2H5COOH] | [C2H5COO–] | [H+] | ||
f.r. | \[0,20\] | \[0\] | \[0\] | M |
∆ | \[- 10^{-2,79}\] | \[+ 10^{-2,79}\] | \[+ 10^{-2,79}\] | M |
v.j. | \[0,20 - 10^{-2,79}\] | \[10^{-2,79}\] | \[10^{-2,79}\] | M |
\[\begin{aligned} K_\mathrm{a} &= \frac {\mathrm{[C_2H_5COO^-][H^+]}}{[\mathrm{C_2H_5COOH}]} = \frac {10^{-2,79}\mathrm{M} \cdot 10^{-2,79}\mathrm{M}}{0,20 - 10^{-2,79}\mathrm{M}} \hspace{100cm} \\ &= 1,32588567 \cdot 10^{-5}\mathrm{M} \approx 1,3 \cdot 10^{-5}\mathrm{M} \end{aligned}\]
\[\mathrm{p}K_\mathrm{a} = -\lg{K_\mathrm{a}} = -\lg(1,32588567 \cdot 10^{-5}) = 4,87749392 \approx 4,88 \hspace{100cm}\]
HNO2 ⇌ NO\(_2^-\) + H+
[HNO2] | [NO\(_2^-\)] | [H+] | ||
f.r. | \[0,020\] | \[0\] | \[0\] | M |
∆ | \[- 10^{-2,58}\] | \[+ 10^{-2,58}\] | \[+ 10^{-2,58}\] | M |
v.j. | \[0,020 - 10^{-2,58}\] | \[10^{-2,58}\] | \[10^{-2,58}\] | M |
\[\begin{aligned} K_\mathrm{a} &= \frac {\mathrm{[NO_2^-][H^+]}}{[\mathrm{HNO_2}]} = \frac {10^{-2,58}\mathrm{M} \cdot 10^{-2,58}\mathrm{M}}{0,020 - 10^{-2,58}\mathrm{M}} \hspace{100cm} \\ &= 3,98296860 \cdot 10^{-4}\mathrm{M} \approx 4,0 \cdot 10^{-4}\mathrm{M} \end{aligned}\]
\[\mathrm{p}K_\mathrm{a} = -\lg{K_\mathrm{a}} = -\lg(3,98296860 \cdot 10^{-4}) = 3,39979312 \approx 3,40 \hspace{100cm}\]
C3H7COOH ⇌ C3H7COO– + H+
a.
\[c_\mathrm{C_3H_7COOH} = \frac {n_\mathrm{C_3H_7COOH}}{V} = \frac {0,279\mathrm{mol}}{1,30\mathrm{dm^3}} = 0,21461538\mathrm{mol/dm^3} \hspace{100cm}\]
[C3H7COOH] | [C3H7COO–] | [H+] | ||
f.r. | \[0,21...\] | \[0\] | \[0\] | M |
∆ | \[- x\] | \[+ x\] | \[+ x\] | M |
v.j. | \[0,21... - x\] | \[x\] | \[x\] | M |
\[K_\mathrm{a} = \frac {[\mathrm{C_3H_7COO^-}][\mathrm{H^+}]}{[\mathrm{C_3H_7COOH}]} \hspace{100cm} \]
\[1,51 \cdot 10^{-5} = \frac {x \cdot x}{0,21... - x} = \frac {x^2}{0,21... - x} \hspace{100cm}\]
\(pq\)-formeln ger:
\[x = 0,00179266 \hspace{100cm} \hspace{100cm}\]
\[[\mathrm{H^+}] = x\mathrm{M} = -\lg0,00179266 = 2,74650207 \approx 2,747 \hspace{100cm}\]
b.
\[c_\mathrm{C_3H_7COOH} = \frac {n_\mathrm{C_3H_7COOH}}{V} \hspace{100cm}\]
\[n_\mathrm{C_3H_7COOH} = \frac {m_\mathrm{C_3H_7COOH}}{M_\mathrm{C_3H_7COOH}} = \frac {13,5\mathrm{g}}{88,1\mathrm{g/mol}} = 0,15323496\mathrm{mol} \hspace{100cm}\]
\[V = 1,30\mathrm{dm^3} \hspace{100cm} \]
\[c_\mathrm{C_3H_7COOH} = \frac {0,15323496\mathrm{mol}}{1,30\mathrm{dm^3}} =0,11787305 \mathrm{mol/dm^3} \hspace{100cm}\]
[C3H7COOH] | [C3H7COO–] | [H+] | ||
f.r. | \[0,11...\] | \[0\] | \[0\] | M |
∆ | \[- x\] | \[+ x\] | \[+ x\] | M |
v.j. | \[0,11... - x\] | \[x\] | \[x\] | M |
\[K_\mathrm{a} = \frac {[\mathrm{C_3H_7COO^-}][\mathrm{H^+}]}{[\mathrm{C_3H_7COOH}]} \hspace{100cm} \]
\[1,51 \cdot 10^{-5} = \frac {x \cdot x}{0,11... - x} = \frac {x^2}{0,11... - x} \hspace{100cm}\]
\(pq\)-formeln ger:
\[x = 0,00132659 \hspace{100cm} \]
\[[\mathrm{H^+}] = x\mathrm{M} \hspace{100cm}\]
\[\mathrm{pH} = -\lg [\mathrm{H^+}] = -\lg0,00132659 = 2,87726328 \approx 2,877 \hspace{100cm}\]
C5H4N4O3 ⇌ C5H3N4O\(_3^-\)
\[c_\mathrm{C_5H_4N_4O_3} = 0,894\mathrm{M} \hspace{100cm}\]
[C5H4N4O3] | [C5H3N4O\(_3^-\)] | [H+] | ||
f.r. | \[0,894\] | \[0\] | \[0\] | M |
∆ | \[- x\] | \[+ x\] | \[+ x\] | M |
v.j. | \[0,894 - x\] | \[x\] | \[x\] | M |
\[K_\mathrm{a} = \frac {[\mathrm{C_5H_3N_4O_3^-}][\mathrm{H^+}]}{[\mathrm{C_5H_4N_4O_3]}} \hspace{100cm}\]
\[5,1 \cdot 10^{-6} = \frac {x \cdot x}{0,894 -x} \hspace{100cm}\]
\(pq\)-formeln ger:
\[x = 0,00213273 = [\mathrm{H^+}] \hspace{100cm}\]
\[\mathrm{pH} = -\lg [\mathrm{H^+}] = -\lg 0,00213273 = 2,67106412 \approx 2,67 \hspace{100cm}\]
CH3CH2NH2 + H2O ⇌ CH3CH2NH\(_3^+\) + OH–
[CH3CH2NH2] | [CH3CH2NH\(_3^+\)] | [OH–] | ||
f.r. | \[0,750\] | \[0\] | \[0\] | M |
∆ | \[-x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,750-x\] | \[x\] | \[x\] | M |
\[5,6 \cdot 10^{-4} = \frac {x \cdot x}{0,750 - x} = \frac {x^2}{0750 - x} \hspace{100cm}\]
\(pq\)-formeln ger:
\[x = 0,0202158 \hspace{100cm} \]
\[[\text{OH}^-] = x\text{M} = 0,0202158\text{M} \approx 0,020\text{M} \hspace{100cm}\]
a.
\[K_{\text{b}} = \frac {K_{\text{w}}}{K_{\text{a}}} = \frac {1,0 \cdot 10^{-14}\text{M}^2}{6,2 \cdot 10^{-9}\text{M}} = 1,61290323 \cdot 10^{-6}\text{M} \approx 1,6 \cdot 10^{-6}\text{M} \hspace{100cm}\]
b.
Vi kan skriva kodeinet K:
K + H2O ⇌ KH+ + OH–
\(K_{\text{b}} = \frac {[\text{KH}^+][\text{OH}^-]}{[\text{K}]}\)
[K] | [KH+] | [OH–] | ||
f.r. | \[0,0020\] | \[0\] | \[0\] | M |
∆ | \[-x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,0020-x\] | \[x\] | \[x\] | M |
\[1,6... \cdot 10^{-6}\text{M} = \frac {x \cdot x}{0,0020 - x} = \frac {x^2}{0,0020-x} \hspace{100cm}\]
\(pq\)-formeln ger:
\[x = 5,59955 \cdot 10^{-5} = [\text{OH}^-] \hspace{100cm} \]
\[\text{pOH} = -\lg[\text{OH}^-] = -\lg (5,59955 \cdot 10^{-5}) = 4,25184687 \hspace{100cm} \]
\[\text{pH} = 14,00 - \text{pOH} = 14,00 - 4,25184687 = 9,74815313 \approx 9,75 \hspace{100cm}\]
a.
pOH = 14,00 – pH = 14,00 – 11,68 = 2,32
b.
[OH–] = 10–pOHM = 10–2,32M = 0,00478630M ≈ 4,8 · 10–3M
c.
NH3 + H2O ⇌ NH\(_4^+\) + OH–
[NH3] | [NH\(_4^+\)] | [OH–] | ||
f.r. | \[x\] | \[0\] | \[0\] | M |
∆ | \[-0,0047...\] | \[+0,0047...\] | \[+0,0047...\] | M |
v.j. | \[x - 0,0047...\] | \[0,0047...\] | \[0,0047...\] | M |
\[K_{\text{b}} = \frac {[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} \hspace{100cm} \]
\[1,8 \cdot 10^{-5} = \frac {0,0047... \cdot 0,0047...}{x-0,0047...} = \frac {0,0047^2}{x-0,0047} \hspace{100cm}\]
(OBS: Jag behåller alla siffrorna i miniräknaren trots att jag bara skrivit ut "\(0,0047\)" i beräkningarna!)
\[1,8 \cdot 10^{-5} (x-0,0047) = 0,0047^2 \hspace{100cm} \]
\[1,8 \cdot 10^{-5} \cdot x - 1,8 \cdot 10^{-5} \cdot 0,0047 = 0,0047^2 \hspace{100cm} \]
\[1,8 \cdot 10^{-5} \cdot x = 0,0047^2 + 1,8 \cdot 10^{-5} \cdot 0,0047 \hspace{100cm} \]
\[x = \frac {0,0047^2 + 1,8 \cdot 10^{-5} \cdot 0,0047}{1,8 \cdot 10^{-5}} = 1,27749055 \hspace{100cm} \]
\[[\text{NH}_3] = x\text{M} = 1,27749055\text{M} \approx 1,3\text{M} \hspace{100cm}\]
(Om man bara räknar med det trunkerade värdet \(0,0047\) får man att \(x = 1,23192222\), vilket inte är korrekt. Om man instället räknar med det avrundade värdet \(0,0048\) får man att \(x = 1,2848\), vilket är bättre men inte heller fullständigt korrekt.)
a.
HC2O\(_4^-\) ⇌ H+ + C2O\(_4^{2-}\)
[HC2O\(_4^-\)] | [H+] | [C2O\(_4^{2-}\)] | ||
f.r. | \[0,100\] | \[0\] | \[0\] | M |
∆ | \[-x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,100-x\] | \[x\] | \[x\] | M |
\[K_{\text{a}} = \frac {[\text{H}^+][\text{C}_2\text{O}_4^{2-}]}{[\text{HC}_2\text{O}_4^-]} \hspace{100cm} \]
\[5,1 \cdot 10^{-5} = \frac {x \cdot x}{0,100 - x} \approx \frac {x^2}{0,100} \hspace{100cm} \]
\[x = \sqrt{0,100 \cdot 5,1 \cdot 10^{-5}} = 0,00225832 \hspace{100cm} \]
\(x \ll 0,10\), därför är det OK att förumma \(x\) bredvid \(0,100\). Vi får då:
\[[\text{H}^+] = x\text{M} = 0,00225832\text{M} \hspace{100cm} \]
\[\text{pH} = -\lg[\text{H}^+] = -\lg 0,00225832 = 2,64621491 \approx 2,65 \hspace{100cm}\]
b.
HSO\(_4^-\) ⇌ H+ + SO\(_4^{2-}\)
[HSO\(_4^-\)] | [H+] | [SO\(_4^{2-}\)] | ||
f.r. | \[0,100\] | \[0\] | \[0\] | M |
∆ | \[-x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,100-x\] | \[x\] | \[x\] | M |
\[K_{\text{a}} = \frac {[\text{H}^+][\text{SO}_4^{2-}]}{[\text{HSO}_4^-]} \hspace{100cm} \]
\[10^{-2,00} = \frac {x \cdot x}{0,100 - x} = \frac {x^2}{0,100 - x}\hspace{100cm}\]
\(pq\)-formeln ger:
\(x_1 = -0,0370156\); orimligt
\(x_2 = 0,0270156\)
\[[\text{H}^+] = x\text{M} = 0,0270156\text{M} \hspace{100cm} \]
\[\text{pH} = -\lg[\text{H}^+] = -\lg 0,0270156 = 1,56838538 \approx 1,57 \hspace{100cm}\]
c.
Al(H2O)\(_6^{3+}\) ⇌ H+ + Al(H2O)6(OH)2+
[Al(H2O)\(_6^{3+}\)] | [H+] | [Al(H2O)6(OH)2+] | ||
f.r. | \[0,100\] | \[0\] | \[0\] | M |
∆ | \[-x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,100-x\] | \[x\] | \[x\] | M |
\[K_{\text{a}} = \frac {[\text{H}^+][\text{Al(H}_2\text{O)}_5\text{(OH)}^{2+}]}{[\text{Al(H}_2\text{O)}_6^{3+}]} \hspace{100cm} \]
\[10^{-5,00} = \frac {x \cdot x}{0,100 - x} \approx \frac {x^2}{0,100} \hspace{100cm} \]
\[x = \sqrt{0,100 \cdot 10^{-5,00}} = 0,001 \hspace{100cm} \]
\(x \ll 0,10\), därför är det OK att förumma \(x\) bredvid \(0,100\). Vi får då:
\[[\text{H}^+] = x\text{M} = 0,001\text{M} \hspace{100cm} \]
\[\text{pH} = -\lg[\text{H}^+] = -\lg 0,001 = 3,00 \hspace{100cm}\]
3.28
Vi utgår hela tiden från att sura och basiska lösningar med samma koncentration blandas.
a.
En stark syra (salpetersyra) neutraliseras av en stark bas (natriumhydroxid). Därför blir den neutraliserade lösningens pH = 7, vilket gör att BTB kan vara en lämplig indikator.
b.
Vi kan anta att 0,100 dm3 0,0250 mol/dm3 HAc-lösning neutraliseras av 0,100 dm3 KOH-lösning med samma koncentration. Vi får då en lösning med KAc(aq). Eftersom \(V_\mathrm{tot} = (0,100 + 0,100)\mathrm{dm^3}\) blir koncentrationen acetatjoner vid start:
\[\begin{align}[\mathrm{Ac^-}] &= \frac {n_\mathrm{Ac^-}}{V_\mathrm{tot}} = \frac {c_\mathrm{HAc} \cdot V_\mathrm{ HAc}}{V_\mathrm{tot}} = \hspace{100cm} \\ &= \frac {0,100\mathrm{dm^3} \cdot 0,0250\mathrm{mol/dm^3}}{(0,100 + 0,100)\mathrm{dm^3}} = 0,0125\mathrm{mol/dm^3} \end{align}\]
Acetatjonen reagerar med vatten:
Ac– + H2O ⇌ HAc + OH–
Vi kan nu beräkna koncentrationerna vid jämvikt:
[Ac–] | [HAc] | [OH–] | ||
f.r. | \[0,0125\] | \[0\] | \[0\] | M |
∆ | \[-x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,0125 - x\] | \[x\] | \[x\] | M |
\[K_\mathrm{b} = \frac {[\mathrm{HAc}][\mathrm{OH^-}]}{[\mathrm{Ac^-}]} \hspace{100cm}\]
\[5,7 \cdot 10^{-10} = \frac {x^2}{0,0125-x} \hspace{100cm}\]
\(pq\)-formeln ger:
\[x = 2,6688 \cdot 10^{-6} \hspace{100cm}\]
\[\begin{align}[\mathrm{OH^-}] &= 2,6688 \cdot 10^{-6} \Rightarrow \hspace{100cm} \\ \mathrm{pOH} &= -\lg[\mathrm{OH^-}] = -\lg(2,6688 \cdot 10^{-6}) = 5,573684\end{align}\]
\[\mathrm{pH} = 14,00 - \mathrm{pOH} = 14,00 - 5,573684 = 8,426316 \approx 8,43 \hspace{100cm}\]
Eftersom pH i den neutraliserade lösningen blir cirka 8,43 kan fenolftalein vara en lämplig indikator.
c.
En stark bas (magnesiumhydroxid) neutraliseras av en stark syra (perklorsyra). Därför blir den neutraliserade lösningens pH = 7, vilket gör att BTB kan vara en lämplig indikator.
d.
Vi kan anta att 0,100 dm3 0,0250 mol/dm3 NH4Cl-lösning neutraliseras av 0,100 dm3 NaOH-lösning med samma koncentration. Vi får då en lösning med NH3(aq). Eftersom \(V_\mathrm{tot} = (0,100 + 0,100)\mathrm{dm^3}\) blir koncentrationen ammoniak vid start:
\[\begin{align}[\mathrm{NH_3}] &= \frac {n_\mathrm{NH_3}}{V_\mathrm{tot}} = \frac {c_\mathrm{NH_4Cl} \cdot V_\mathrm{NH_4Cl}}{V_\mathrm{tot}} = \hspace{100cm} \\ &= \frac {0,100\mathrm{dm^3} \cdot 0,0150\mathrm{mol/dm^3}}{(0,100 + 0,100)\mathrm{dm^3}} = 0,0075\mathrm{mol/dm^3} \end{align}\]
Ammoniaken reagerar med vatten:
NH3 + H2O ⇌ NH\(_4^+\) + OH–
Vi kan nu beräkna koncentrationerna vid jämvikt:
[NH3] | [NH\(_4^+\)] | [OH–] | ||
f.r. | \[0,0075\] | \[0\] | \[0\] | M |
∆ | \[-x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,0075 - x\] | \[x\] | \[x\] | M |
\[K_\mathrm{b} = \frac {[\mathrm{NH_4^+}][\mathrm{OH^-}]}{[\mathrm{NH_3}]} \hspace{100cm}\]
\[1,8 \cdot 10^{-5} = \frac {x^2}{0,0075-x} \hspace{100cm}\]
\(pq\)-formeln ger:
\[x = 0,000358534 \hspace{100cm}\]
\[\begin{align}[\mathrm{OH^-}] &= 0,000358534 \Rightarrow \hspace{100cm} \\ \mathrm{pOH} &= -\lg[\mathrm{OH^-}] = -\lg0,000358534 = 3,44546965 \end{align}\]
\[\mathrm{pH} = 14,00 - \mathrm{pOH} = 14,00 - 3,44546965 = 10,55453035 \approx 10,55 \hspace{100cm}\]
Eftersom pH i den neutraliserade lösningen blir cirka 10,55 kan alizaringult vara en lämplig indikator.
C5H11COOH ⇌ C5H11COO– + H+
\(c_{\mathrm{C}_5\mathrm{H}_{11}\mathrm{COOH}} = \frac {0,450\text{mol}}{2\text{dm}^3} = 0,225\text{mol/dm}^3\)
[C5H11COOH] | [C5H11COO–] | [H+] | ||
f.r. | \[0,225\] | \[0\] | \[0\] | M |
∆ | \[- 10^{-2,77}\] | \[+ 10^{-2,77}\] | \[+ 10^{-2,77}\] | M |
v.j. | \[0,225 - 10^{-2,77}\] | \[10^{-2,77}\] | \[10^{-2,77}\] | M |
\[\begin{aligned} K_\mathrm{a} &= \frac {[\mathrm{C}_5\mathrm{H}_{11}\mathrm{COO}^-][\text{H}^+]}{[\mathrm{C}_5\mathrm{H}_{11}\mathrm{COOH}]} = \frac {10^{-2,77}\text{M} \cdot 10^{-2,77}\text{M}}{(0,225 - 10^{-2,77})\text{M}} = \hspace{100cm} \\ &= 0,000012915\text{M} \approx 1,3 \cdot 10^{-5}\text{M} \end{aligned}\]